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A Unified Stepwise Regression Procedure for Evaluating the Relative
Effects of Polymorphisms within a Gene Using Case/Control or Family
Data: Application to HLA in Type 1 Diabetes
Heather J. Cordell and David G. Clayton
Department of Medical Genetics, University of Cambridge, Cambridge

A stepwise logistic-regression procedure is proposed for evaluation of the relative importance of variants at different
sites within a small genetic region. By fitting statistical models with main effects, rather than modeling the full
haplotype effects, we generate tests, with few degrees of freedom, that are likely to be powerful for detecting primary
etiological determinants. The approach is applicable to either case/control or nuclear-family data, with case/control
data modeled via unconditional and family data via conditional logistic regression. Four different conditioning
strategies are proposed for evaluation of effects at multiple, closely linked loci when family data are used. The first
strategy results in a likelihood that is equivalent to analysis of a matched case/control study with each affected
offspring matched to three pseudocontrols, whereas the second strategy is equivalent to matching each affected
offspring with between one and three pseudocontrols. Both of these strategies require parental phase (i.e., those
haplotypes present in the parents) to be inferable. Families in which phase cannot be determined must be discarded,
which can considerably reduce the effective size of a data set, particularly when large numbers of loci that are not
very polymorphic are being considered. Therefore, a third strategy is proposed in which knowledge of parental
phase is not required, which allows those families with ambiguous phase to be included in the analysis. The fourth
and final strategy is to use conditioning method 2 when parental phase can be inferred and to use conditioning
method 3 otherwise. The methods are illustrated using nuclear-family data to evaluate the contribution of loci in
the HLA region to the development of type 1 diabetes.

Introduction

An important methodological issue in the identification
of genes involved in complex disease is to distinguish
between predisposing etiological variants and alleles at
neighboring polymorphisms that may be in linkage dis-
equilibrium (LD) with etiological variants but do not
themselves have a direct involvement in causing disease.
This task is considerably complicated by the high levels
of LD observed between closely linked variants and by
the fact that, even within a single gene, there may be
more than one polymorphism involved in the disease.
Once a genetic region involved in a complex disease has
been localized (e.g., by use of linkage or association
methods), a number of potentially causative sites may
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exist in the region, including a large number of single
nucleotide polymorphisms (SNPs). A question of some
interest is to determine which sites or combination of
sites have a causal role in disease, and which show a
disease association merely because of LD or because of
their modifying effects on primary disease-causing poly-
morphisms in the region.

This question has received some attention in the study
of HLA-associated diseases such as type 1 diabetes and
rheumatoid arthritis, both of which show effects that
map to the major histocompatibility complex (MHC).
This region on chromosome 6 contains many genes in-
volved in immunological response (Beck and Trowsdale
1999), but identification of the underlying disease genes
is complicated by strong LD in the region. To distinguish
between the primary (causal) and secondary effects in
this region, several methods have been proposed. For
example, the homozygous parent transmission/disequi-
librium test (TDT) (Lie et al. 1999), motivated by the
homozygous affected-sib-pair method (Robinson et al.
1993), considers transmissions of alleles from parents
homozygous at the primary locus but heterozygous at
a possible secondary locus, to affected offspring. A dis-
advantage of this test is that only parents who are ho-
mozygous at the primary locus contribute to the statis-
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tic, resulting in a considerable loss of information when
the primary locus has more than two alleles. An alter-
native test is the haplotype method (Thomson et al.
1988; Valdes and Thomson 1997), which compares the
relative frequencies of alleles at a secondary locus on
haplotypes that are identical at a primary locus (or loci),
in cases and controls. This method, which has been
further developed by Li (2001), assumes that haplotypes
of variants at L sites (loci) are available for a series of
cases and controls. A similar method, in which odds
ratios are calculated in case/control data for haplotypes
with identical alleles at a primary locus (or loci), but
differing alleles at a secondary locus, was used by Mig-
not et al. (2001). The haplotype method has also been
applied to nuclear family data by incorporation of the
method into a modified transmission/disequilibrium test
(TDT) procedure (Cucca et al. 2001a) or by application
of the method to affected family-based (AFBAC; Thom-
son 1995) controls (Zavattari et al. 2001). Construction
of haplotypes in AFBAC controls is problematic, how-
ever, unless transmitted and untransmitted haplotypes
can be unambiguously determined in every family,
because discarding those families in which haplotypes
are actually or potentially not inferable may induce a
bias in the resulting estimated AFBAC haplotype
frequencies.

A disadvantage of the haplotype method is that it
may not be clear which haplotype background (i.e.,
which alleles at the primary locus or loci ) should be
used. If the test is repeated on a large number of back-
grounds, a multiple-testing problem will result. This
problem may be overcome by use of standard epide-
miological procedures for analysis of case/control data,
such as logistic regression, in which the additional con-
tribution of the secondary locus is evaluated by com-
parison of a model in which the main effects and sta-
tistical interaction terms for both loci on a haplotype
are modeled with one in which the main effects at the
primary locus only are included. This is similar in spirit
to the conditional extended transmission disequilibrium
test (CETDT) proposed by Koeleman et al. (2000) for
the analysis of family data.

A disadvantage of methods that focus on haplotypes
as opposed to the multilocus (phased) genotypes of in-
dividuals is that these methods ignore any additional
information contained in the combination of haplotypes
present in an individual. Focusing on the haplotype as
the unit of interest makes sense when one is aiming to
localize a single etiological variant using LD methods
under the assumption that the causative allele at the
variant arose on a specific ancestral haplotype. In this
case, the causative polymorphism itself may not even
be present in the data set, although polymorphisms in
varying degrees of LD with the causative polymorphism

will be present. If, on the other hand, one has a collec-
tion of polymorphisms, several of which are likely to
be etiological, it makes more sense to consider the over-
all combination of genotypes at the set of loci. In this
way, we can allow for or indeed specifically test for
dominance effects at any of the loci. For example, sup-
pose we have two diallelic variants of interest in a re-
gion, variant 1 with alleles a and A and variant 2 with
alleles b and B. Then denoting chromosomes (haplo-
types) in the order paternal/maternal, there are 16 pos-
sible phased genotypes for an individual, which may be
represented as ab/ab, ab/aB, ab/Ab, ab/AB, aB/ab, aB/
aB, aB/Ab, aB/AB, Ab/ab, Ab/aB, Ab/Ab, Ab/AB, AB/
ab, AB/aB, AB/Ab, and AB/AB. The full genotype
model for the effects of these two loci would model the
probability of being affected with disease as some func-
tion of 16 parameters corresponding to the 16 possible
underlying genotypes. Assuming no parent-of-origin ef-
fects, we may assume that the disease risk for genotype

equals that for genotype , and so we may modelij/kl kl/ij
the probability of being affected with disease as some
function of 10 parameters corresponding to the 10
phased genotypes (without distinguishing the parental
origin of chromosomes) ab/ab, ab/aB, ab/Ab, ab/AB,
aB/aB, aB/Ab, aB/AB, Ab/Ab, Ab/AB, and AB/AB. A
model in which only variant 1 was important would
model the disease probability as a function of just three
parameters, corresponding to the genotypes a/a, a/A, or
A/A at that locus. To test whether variant 2 is important
once we have accounted for the effects of variant 1, we
could therefore compare the fit of the 10-parameter
model, which takes into account phased genotypes at
both loci, to that of the 3-parameter model, which takes
into account only genotypes at locus 1. To test whether
the overall combination of variants 1 and 2 is important
in disease we could compare the fit of the 10-parameter
model to that of a single-parameter model in which the
probability of being affected with disease does not de-
pend on genotype at either locus.

The phased genotype model makes a distinction be-
tween the risks for genotypes and . If weab/AB aB/Ab
are willing to make the assumption that these two gen-
otypes have the same disease risk—that is, that there
are no “haplotype effects”—we may reduce the number
of parameters to nine. This assumption is reasonable if
the loci included in the model are the true disease-caus-
ing etiological variants. If the loci are, in fact, associated
with disease because of LD with the true etiological
variant(s), we would expect these “haplotype effects”
to be non-negligible. Indeed, the existence of such effects
would provide convincing evidence that a further locus
is involved.

In the absence of haplotype effects, the data may be
conveniently statistically represented in a linear model,



126 Am. J. Hum. Genet. 70:124–141, 2002

in which the probability of disease becomes a function
of the genotypes at the two loci and of epistatic inter-
actions between them:

Prob(disease) p f(b � b I � b I0 1 aA 2 AA

�b I � b I � b I I3 bB 4 BB 5 aA bB

�b I I � b I I � b I I ) ,6 aA BB 7 AA bB 8 AA BB

where is an indicator function taking the value 1 ifIg

an individual has genotype g and 0 otherwise, and
are the nine parameters to be estimated. Forb ,b , … b0 1 8

this model, it is not necessary to know the phase of a
doubly heterozygous individual. This is likely to be an
advantage, since it avoids throwing away data for which
the unphased genotypes are known but the haplotypes
present (i.e., the phase information) cannot be deter-
mined. If, in fact, we are interested in narrowing down
primary functional variants, rather than indirectly as-
sociated ones, we may reduce the model still further by
ignoring epistatic interaction terms and fitting the model

Prob(disease) p f(b � b I0 1 aA

� b I � b I � b I ) .2 AA 3 bB 4 BB

Comparison of this model, in which effects at both var-
iants are included, to the model ,f(b � b I � b I )0 1 aA 2 AA

in which effects at locus 1 only are included, provides
a test for the “main effects” of locus 2 while controlling
for confounding at locus 1. This test has 2 df, corre-
sponding to the difference in numbers of estimated pa-
rameters between the two models. This is considerably
less than the 6-df test achieved when epistatic interac-
tions are included or the 7-df test achieved when hap-
lotype and epistatic effects are included. Similarly, the
main effects test for the combined effect of both loci
(against the null hypothesis that neither are involved)
has 4 df, as opposed to 8 or 9 df when epistatic and/
or haplotype effects are included. The degrees of free-
dom for the main effects test can be reduced still further
by making additional assumptions, such as the absence
of dominance, which would be equivalent to assuming
that and/or .b p 2b b p 2b4 3 2 1

The reduced number of degrees of freedom possible
in the “main effects” test suggests that for functional
variants, this framework will provide the most powerful
test of whether the loci are genuinely etiological. Given
a small number of loci, these models can be examined
by looking at the association between genotype and
disease at each locus in turn, stratifying by genotype at
the other loci. This would be similar in spirit to many
of the previously proposed procedures, such as the hap-
lotype method and homozygous-parent test. However,
a more natural and convenient way to achieve the same

result is to fit the models in a regression framework.
Linear-regression models can be fit in most standard
statistical packages. For case/control data the likelihood
takes a form that leads to logistic-regression analysis
(for unmatched cases and controls), whereas for family
studies, the likelihood takes the form for conditional
logistic regression (or matched case/control) analysis.
Given a trio consisting of parents with a single affected
offspring, and assuming haplotypes in the parents are
known, we use the affected offspring as a case individual
and construct three matched “pseudocontrol” individ-
uals with phased genotypes constructed from the three
other possible combinations of haplotypes that could
have been transmitted from the parents (Self et al.
1991). This procedure was used by Thomas et al.
(1995), who implemented the conditional logistic re-
gression analysis via an empirical Bayes approach to
deal with problems of multicolinearity and sparse data.
Alternatively, Falk and Rubenstein (1987) proposed
constructing, for each case, a single matched pseudo-
control whose phased genotypes consist of the haplo-
types not transmitted from the parents to the affected
offspring. However, the subsequent analysis proposed
by these authors ignored the resulting matching in these
data.

Previous implementations of conditional logistic re-
gression–type methods for family data have assumed
that haplotypes in the parents are either known or can
be inferred from whatever offspring is produced (see the
method 1 subsection, below). This may be true for
highly polymorphic systems such as HLA, but it is un-
likely to be true in general for a genetic region of in-
terest. At the very least, we are likely to have to discard
families for which this condition is not satisfied. Here,
we propose three additional methods that allow us to
make use of some or all such families. In the method 2
subsection, below, we show how to use families in which
the case and one or more of the three potential pseu-
docontrols are able to resolve the parental phase. In the
method 3 and method 4 subsections, below, we show
how all typed families may be used, regardless of
whether parental phase is resolvable, provided that we
wish only to fit a model for the main effects of the loci
of interest.

Methods

Case/Control Data

Suppose we have a sample of cases and controls,n n1 2

each genotyped at L polymorphisms (loci) within a gene
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believed to be associated with disease. The likelihood of
the observed data can be written as

N

I 1�Ij j� p (1 � p) ,j j
jp1

where the product is over all individuals,N p n � n1 2

represents the probability of individual j being a casepj

rather than a control, and is an indicator functionIj

taking the value 1 if individual j is a case and 0 otherwise.
Following the standard statistical framework for gen-
eralized linear models (Nelder and Wedderburn 1972;
McCullagh and Nelder 1989), we model aspj

Tb xe
p p Tb x1 � e

or, equivalently, as

p Tlogit(p) p ln p b x ,
1 � p

where is a vector that depends on the genotypes of thex
individual and a vector of coefficients to be estimated.b

The length of the vector and the coding schemex
whereby is related to the genotypes at the L poly-x
morphisms determine the current model for the effects
of these loci. Suppose we wish to model the effect of a
single SNP locus. Then the possible genotypes at the SNP
are 1/1, 1/2, and 2/2, which may be coded (for example)
as . The linear model is thenx p �1, 0, 11

logit(p) p b � b x ,0 1 1

where (the intercept) and (the effect due to theb b0 1

SNP) may both be estimated. This model can be com-
pared to the model

logit(p) p b ,0

where alone is estimated, using either a likelihoodb0

ratio or an efficient score test. In this way, we test
whether the data is significantly better represented when
the SNP is included in the model compared to when it
is not in the model. This is equivalent to testing whether
the coefficient is significantly different from 0. Noteb1

that the estimate is not biologically meaningful unlessb0

the sample is actually a population cohort, in which case
estimates the log odds of being affected with diseaseb0

in the population.
The coding scheme assumes that thex p �1, 0, 11

effect of having two copies of allele 2 is twice that of
having a single copy (i.e., there is no dominance effect).
In this case, represents the odds ratio for disease dueb1e
to allele 2, and the test is equivalent to testing whether

this odds ratio equals 1. Alternatively, the full effect of
the SNP genotype can be modeled by specifying an ad-
ditional variable (e.g., coded �0.5, 0.5, �0.5 for gen-x2

otypes 1/1, 1/2, and 2/2) and comparing the full geno-
type model

logit(p) p b � b x � b x0 1 1 2 2

with

logit(p) p b .0

In this case, is a parameter representing the additiveb1

effect of allele 2 on the logit scale, and is a parameterb2

representing the dominance effect of allele 2 over allele
1. If the polymorphisms in the gene are multiallelic
rather than diallelic, the coding scheme can be extended
to reflect this (e.g., see the coding schemes discussed by
Schaid [1996] in the context of family data). These mod-
els, which are additive on a logit scale, correspond to
multiplicative models on the odds scale and, therefore,
to multiplicative models on an absolute risk scale, under
an assumption of rare disease.

The advantage of specifying the test as a generalized
linear model is that it is easy, in this framework, to test
the additional effect of a locus, once the effects of other
loci have already been accounted for. We do this by
comparing the fit of a model that includes both the locus
of interest and the other loci to that of a model where
only the other loci are included. By restricting the pa-
rameter(s) corresponding to the locus of interest to main
effects, we can we can perform a 1-df or 2-df test for
the additional effect of any SNP even after the effects of
other SNPs have already been accounted for. For ex-
ample, to test the effect of a third (test) locus while
accounting for the main effects at two primary loci, and
allowing for dominance at the primary and test loci, we
compare the fit of the model

6

logit(p) p b � b x�0 i i
ip1

with

4

logit(p) p b � b x�0 i i
ip1

(where the pairs [ , ], [ , ], and [ , ] are thex x x x x x1 2 3 4 5 6

coded genotypes for the three loci). We may also allow
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for dominance at the conditioning (primary) loci but not
at the test locus by comparing

5

logit(p) p b � b x�0 i i
ip1

with

4

logit(p) p b � b x .�0 i i
ip1

To test the main effect of the test locus, while accounting
for the full genotype effect of the two primary loci, we
compare

6 2 4

logit(p) p b � b x � b x x� ��0 i i ij i j
ip1 ip1 jp3

with

4 2 4

logit(p) p b � b x � b x x .� ��0 i i ij i j
ip1 ip1 jp3

A convenient strategy for evaluation of the effects of
the different polymorphisms within the gene is to fit
these models in a stepwise logistic-regression procedure.
Many standard statistics packages will perform auto-
mated stepwise logistic regression, using forward or
backward selection. In forward selection, we start with
the null model and, for each locus in turn,logit(p) p b0

consider the effect of adding the locus to the model.
Provided that at least one of the loci gives a significant
improvement in fit, we add the most significant locus to
the current model and then consider the effect of adding
additional loci. Again, each additional locus is consid-
ered in turn, and the one giving the greatest improvement
in fit is added to the current model. This procedure is
repeated until no more loci give a significant improve-
ment in fit. An alternative—and usually preferred—
strategy is the use of backward selection, in which we
start with a model that includes the effects at all poly-
morphisms under consideration. Each polymorphism is
then deleted in turn from this full model, and the one
that gives the least-significant deterioration in fit is re-
moved from the current model. At the next stage, each
locus still in the model is again deleted in turn, and the
one that gives the least-significant deterioration is again
removed from the current model. This continues until
no more loci can be removed without significantly de-
teriorating the fit. In practice, most automated proce-
dures employ a mixture of backward and forward se-
lection, so that, at each stage, loci that have previously
been removed may be added again if they offer signifi-
cant improvement to the current model and vice versa.

In this way, we generate a final model in which all poly-
morphisms in the model may be considered to have a
significant effect on disease development, even once the
effects of any other polymorphisms in that gene have
been accounted for, and any polymorphisms not in the
model do not appear to have significant effects once the
polymorphisms that are in the model have been ac-
counted for. The assumption is, therefore, that each of
those polymorphisms in the model is likely to be either
genuinely functional or to be in LD with another func-
tional polymorphism that has not been typed in the orig-
inal data set. Given a set of functional polymorph-
isms—which may be generated using the procedure
above, from previous studies, or from knowledge about
the functional variants in the region—we may test the
overall effect of the set of variants by comparing the
model that includes these variants to the null model in
which none are included. However, if the set consists of
a large number of polymorphisms, this test will have a
large number of degrees of freedom and so may not be
as powerful as individual tests of the individual
polymorphisms.

Nuclear Family (TDT) Data

Suppose we have a sample of N unrelated cases with
parents, all of whom are again genotyped at L poly-
morphisms (loci) within a gene that is believed to be
associated with disease. If the haplotypes across the gene
in the case and parents have been determined (i.e., phase-
known data), the appropriate likelihood is the condi-
tional logistic-regression likelihood (Self et al. 1991;
Schaid 1996) in which each case is matched to three
“pseudocontrols” such that the genotypes of the pseu-
docontrols consist of the other three possible haplotype
combinations that could have been transmitted from the
parents. Suppose, for example, that we have parents with
haplotypes a/b and c/d, and the affected offspring has
the haplotype a/c. Denote the fully phased genotypes of
the case, the mother, and the father as , , and ,g g gc m f

respectively, and let D represent the event that an in-
dividual is a case (i.e., diseased). Then,

P(DFg ,g ,g )P(g Fg ,g )P(g ,g )c m f c m f m fP(g Fg ,g ,D) pc m f ∗ ∗� P(DFg ,g ,g )P(g Fg ,g )P(g ,g )m f m f m f∗g �G

P(DFg )P(g Fg ,g )c c m fp ,∗ ∗� P(DFg )P(g Fg ,g )m f∗g �G

where the sum in the denominator is over the four pos-
sible haplotype combinations that the parents can pro-
duce and each is one of those four. Let be the∗g R(g)
relative risk of disease for genotype g relative to some
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arbitrarily chosen baseline genotype. Then this equation
simplifies to

R(g )cP(g Fg ,g ,D) p (1)c m f ∗� R(g )
∗g �G

or, in our example,

P(g Fg , g , D)c m f

R(a/c)
p . (2)

R(a/c) � R(a/d) � R(b/c) � R(b/d)

As already noted, this likelihood is equivalent to that
used in conditional logistic regression with a case with
(phased) genotype matched to three controls witha/c
(phased) genotypes a/d, b/c, and b/d. The likelihood for
the whole data set is the product of these terms across
all N trios of cases and their parents. This may be con-
veniently calculated by use of standard software for con-
ditional logistic regression.

If the effect of the haplotypes is assumed to be mul-
tiplicative—that is, if can be written in terms ofR(i/j)
haplotype relative risk parameters and , such thatr ri j

)—we haveR(i/j) p r ri j

r ra cP(g Fg ,g ,D) pc m f r r � r r � r r � r ra c a d b c b d

r ra cp 7 , (3)
r � r r � ra b c d

so the parental transmissions can be considered as in-
dependent. Note that this is equivalent to assuming mul-
tiplicative effects of alleles within loci and also multi-
plicative effects of loci (Koeleman et al. 2000). This
assumption will be true under the null hypothesis that
there is no relationship between genotype (at any of the
loci) and disease (i.e., ) but may not holdR(g) p 1, Gg
under other, more complex null hypotheses—for ex-
ample, the hypothesis that some of the loci, but not
others, are involved in disease.

The problem with this approach in analysis of multil-
ocus data is that, often, the haplotypes are not known
(although they may, in some cases, be inferred). Therefore,
the appropriate conditional probability expression for a
trio is not but instead , whereP(g Fg ,g ,D) P(G FG ,G ,D)c m f c m f

refers to the unphased genotypes of individual i. Anal-Gi

ogously to the phase-known situation, we may write

P(DFG )P(G FG ,G )c c m fP(G FG ,G ,D) p . (4)c m f ∗ ∗� P(DFG )P(G FG ,G )m f∗G �G

The expressions and involve∗P(G FG ,G ) P(G FG ,G )c m f m f

prior probabilities of parental phase and recombination
probabilities between the loci. Specifically,

∗ ∗P(G FG ,G ) p P(G Fg ,g )�m f m f
g ,gm f

# P(g ,gFG ,G )m f m f

∗p P(G Fg ,g )� m f
g ,gm f

P(G ,GFg ,g )P(g ,g )m f m f m f# ,
P(G ,G )m f

where and are functions of the under-P(g ,g ) P(G ,G )m f m f

lying population haplotype (or phased genotype) fre-
quencies, take values of 0 or 1, dependingP(G ,GFg ,g )m f m f

on whether and are compatible with and ,G G g gm f m f

and depend on Mendelian transmission and∗P(G Fg ,g )m f

recombination. Even if the recombination rate is as-
sumed to be 0 (since the loci are within the same gene),
the fact that and may result from several differentG Gm f

possibilities for and means that may∗g g P(G FG ,G )m f m f

be non-zero for a large number of values of . For∗G
example, given parents who are heterozygous for dif-
ferent alleles at each of L loci, there are possible valuesL4
of . Therefore, the sum in the denominator of equa-∗G
tion (4) is over not four but a potentially large number
of possible haplotype transmissions from the parents,
with probabilities dependent on the underlying popu-
lation frequencies of these haplotypes. This means the
likelihood no longer has the convenient formulation of
equation (2). However, it is possible to recover a similar
formulation by further conditioning. Let y denote some
event in the family on which we will condition. Then

P(DFG )P(G Fy)c cP(G Fy,D) p (5)c ∗ ∗� P(DFG )P(G Fy)
∗G �G

We will consider four choices for y that lead to likeli-
hoods that can be conveniently expressed in a condi-
tional logistic-regression framework. In each of these,
having observed the parental and offspring genotypes

, , , we first condition upon the parental geno-G G Gm f c

types , and the disease status of the offspring, D.G Gm f

In general, the probabilities of the possible offspring gen-
otypes depend on population haplotype frequencies∗G
and recombination, as well as on genotype relative risks.
To avoid the dependence of the likelihood on these nui-
sance parameters, we condition further by identifying
subsets of possible offspring genotypes, within which the
probability of each offspring genotype, given parental
genotypes, is constant. Then, conditioning upon the off-
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spring genotype belonging to such a subset, say S, the
probability can be written asP(G FS,D)c

P(DFG )P(G FS)c cP(G FS,D) pc ∗ ∗� P(DFG )P(G FS)
∗G �S

P(DFG )cp .∗� P(DFG )
∗G �S

This is the same as the likelihood for a matched case/
control study in which the case is the genotype of the
affected offspring and the controls are the other geno-
types in the set S. This likelihood therefore can be con-
veniently fitted using standard software for conditional
logistic regression. Moreover, since the likelihood ob-
tained is a true conditional likelihood, the parameter
estimates obtained will have the properties of condi-
tional maximum likelihood estimates—that is, they will
provide consistent estimates of the underlying genotype
(or, where appropriate, haplotype) relative risks.

Method 1. Conditioning on the fact that all possible
offspring allow deduction of parental phase: the
CETDT.—For the first conditioning method, we define
subsets S in terms of parental phase. Given unphased pa-
rental genotypes , , there are a number of possibleG Gm f

underlying phased genotypes , . We define as theg g Sm f k

set of the four possible unphased offspring genotypes
transmitted from the parents, assuming phase assignment
k and no recombination between the loci. For instance,
suppose the father has unphased genotypes at locusa/b
1 and at locus 2, which we denote (a/b, u/v) and theu/v
mother has genotypes c/d at locus 1 and at locus 2,x/y
denoted (c/d, x/y). The possible phases in the parents are:
phase 1, and ; phase 2, and ; phaseau/bv cx/dy au/bv cy/dx
3, and ; phase 4, and cy/dx. The re-av/bu cx/dy av/bu
sulting subsets of offspring genotypes are, therefore,

S p {(a/c, u/x), (a/d, u/y), (b/c, v/x), (b/d, v/y)} ,1

S p {(a/c, u/y), (a/d, u/x), (b/c, v/y), (b/d, v/x)} ,2

S p {(a/c, v/x), (a/d, v/y), (b/c, u/x), (b/d, u/y)} ,3

and

S p {(a/c, v/y), (a/d, v/x), (b/c, u/y), (b/d, u/x)} .4

Note that elements within a subset may be identical; for
example, if the mother’s genotype were also (a/b, u/v)
instead of , then the first set would be(c/d, x/y) S p1

, , , which has only{(a/a, u/u) (a/b, u/v) (a/b, u/v) (b/b, v/v)}
three distinct elements, since the unphased genotype

appears twice. Note that elements in different(a/b, u/v)
subsets may also be identical; for example, in the case
where mother and father both have genotype ,(a/b, u/v)

we also have , , ,S p {(a/a, v/v) (a/b, u/v) (a/b, u/v)4

—that is, the genotype appears in(b/b, u/u)} (a/b, u/v)
both and .S S1 4

Subsets constructed in this way have the property that
the prior probability of all the elements within a subset
(given and ) is constant, since the elements areG Gm f

constructed by Mendelian inheritance from a particular
set of phased parental genotypes . Although weg , gm f

assumed zero recombination in the construction of the
subsets, this assumption is not necessary to achieve the
property of constant prior probability; for example, if
the recombination fraction (v) were allowed between the
loci, given underlying parental phase 1, we would be
able to construct the elements in subsets , , , andS S S1 2 3

with probabilities , , , and ,2 2S (1 � v) v(1 � v) (1 � v)v v4

respectively. Since we will be conditioning on being in
a particular subset, it does not matter which underlying
parental phase gave rise to that subset; the recombina-
tion parameter is conditioned out in the likelihood. An
equivalent way of considering this is to define the whole
procedure as a function of gametic haplotypes—that is,
those produced by the parents at meiosis (Koeleman et
al. 2000)—rather than as a function of the actual pa-
rental haplotypes.

Conditional on the parental genotypes , weG , Gm f

construct phase-specific subsets , where PS , S , … , S1 2 P

denotes the number of possible phase assignments in the
parents. The observed offspring genotype may fallGc

into one or more of these subsets. Falling into one and
only one subset implies that the parental phase can be
inferred unambiguously from the offspring genotype.
Given that falls into a particular subset , if thatG Sc i

subset is disjoint from (i.e., has no elements in common
with) all other subsets, then must only appear inGc

subset . For method 1, we condition on the fact thatSi

and that is disjoint from all other subsets .G � S S Sc i i k

The overall conditioning event y, therefore, corresponds
to the intersection of the events that the parental gen-
otypes are and , that the offspring is affected, thatG Gm f

the offspring genotype is in the set , and thatG Sc i

, with itself only being determinedS W S p {}, Gk ( i Si k i

after the offspring genotype is observed. This con-Gc

ditioning is essentially equivalent to that used by the
CETDT (Koeleman et al. 2000). Although the fact is not
entirely clear from the original description of the
CETDT, this test first deduces parental haplotypes and
then uses only families in which the same parental hap-
lotypes would be deducible from all possible offspring
that parents with those deduced haplotypes could pro-
duce. (In this way, the bias that can occur when only
unambiguous haplotype transmissions are counted [see
Dudbridge et al. 2000] is avoided.) The resulting data
consists of one case and three pseudocontrols that can
be analyzed using conditional logistic regression. Sup-
pose we deduce parental haplotypes and anda/b c/d
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affected offspring haplotypes . Then, provided thata/c
all possible offspring , , , and allow deduc-a/c a/d b/c b/d
tion of the same parental haplotypes, we use as thea/c
case and , , and as the three pseudocontrols.a/d b/c b/d
If deduction of parental phase is not possible from all
pseudocontrols, we discard the family entirely (more pre-
cisely, the multiplicative likelihood contribution from
this family is 1). For example, suppose we have a family
that is typed at two SNPs, with the father and mother
both heterozygous 1/2 at both loci and with the affected
child homozygous 1/1 at both loci. Then we know from
the child that, in each parent, the haplotypes must be
11/22. In this case, we can deduce the transmitted and
untransmitted haplotypes: each parent transmits an 11
haplotype and does not transmit a 22 haplotype. How-
ever, if the offspring instead had received a 11 haplotype
from one parent and a 22 from the other, we would not
be able to tell whether the transmitted haplotypes were
11 and 22 or 12 and 21. The CETDT therefore discards
this family, since the parental haplotypes are not de-
ducible from all possible offspring. A way to avoid dis-
carding the family would be to implement the CETDT,
using an expectation-maximization (EM) algorithm
(Dempster et al. 1977), which would allow all families
to contribute to the test statistic, even when the parental
phase is uncertain. However, implementation of a valid
EM procedure when a complex null hypothesis is being
tested is problematic. Although such fitting is not re-
quired by the theory, a major limitation of the CETDT
as currently implemented is that it fits the conditional
version of likelihood (3) rather than likelihood (2)—that
is, a multiplicative model is assumed for the effects of
different loci and for alleles within a single locus (Koe-
leman et al. 2000). This is necessary to achieve the fac-
torization given in equation (3) and thus to consider
maternal and paternal transmissions as independent. In
the next section, we will consider likelihoods that do not
have this restriction and that also, through a modifica-
tion of the conditioning, allow utilization of data from
a larger number of families.

Method 2. Conditioning on phase being infer-
able.—The fact that method 1 discards families in which
the parental phase is not inferable from all possible off-
spring is likely to result in a loss of information, par-
ticularly when using extended haplotypes of loci that are
not very polymorphic. By adjusting the conditioning ar-
gument, however, we may retain many of these families.
In method 2 we proceed exactly as in method 1, except
that, having determined a phase-specific subset toSi

which belongs, we condition on belonging onlyG Gc c

to the “disjoint” part of —that is, the subset of′S S Si i i

that does not intersect with any other phase-specific sub-
set . If is disjoint from all , the resulting subsetS S Sk i k

on which we condition is , the same as in method′S Si i

1. If has some elements in common with any , ′S S Si k i

consists of just those elements of that do not appearSi

in any other . The distinction between this approachSk

and that of method 1 is that if any of the possible off-
spring (in addition to the case) allow deduction of gm

and , we use these individuals as pseudocontrols, to-gf

gether with the case, in a conditional logistic regression
analysis. Suppose we deduce parental haplotypes anda/b

and affected offspring haplotypes . Then, in thisc/d a/c
case, the denominator of (5) would sum over those pos-
sible offspring that allow deduction of parental
phase—that is, the sum is over corresponding to∗G

(for the case), and between one and three additionala/c
values for , corresponding to whichever of the off-∗G
spring , , and allow deduction of parentala/d b/c b/d
phase. In our earlier example—where both parents were
heterozygous 1/2 at both loci, and the affected child was
homozygous 1/1 at both loci—we therefore have a case
with two 11 haplotypes and a single pseudocontrol with
two 22 haplotypes, since these are the only possible off-
spring that would allow deduction of parental phase.
The likelihood contribution for this family, therefore,
would be

R(G )cP(G Fy,D) pc ∗� R(G )
∗G �G

R(11/11)
p

R(11/11) � R(22/22)

Note that use of this likelihood contribution is equiva-
lent to that achieved when the correct variance is used
in a TDT procedure with extended haplotypes (Dud-
bridge et al. 2000).

This approach extends very naturally to the situation
where there is additional genetic information in a
family—for example, genotypes of unaffected siblings or
additional family members. We can use all available in-
formation to deduce parental phase. If phase is not de-
ducible, this family will make no contribution to the
likelihood. If phase is deducible, we consider the other
three possible phased genotypes that the case could have
inherited from the parents. These form three potential
pseudocontrols. For each pseudocontrol, in turn, we test
whether, if the index or case offspring were replaced by
the pseudocontrol, the phased parental genotypes would
still be uniquely determined (taking into account the
additional family information—for example, from un-
affected offspring). If the parental haplotypes are still
inferable, the pseudocontrol is retained. Provided that
there is at least one pseudocontrol remaining, we use
the index case and matched pseudocontrol(s) in the con-
ditional logistic-regression analysis.

Method 3. Conditioning on the set of transmitted and
untransmitted genotypes, regardless of phase.—The two
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Figure 1 Relative efficiency of method 4, compared with that
of method 3, for a single diallelic locus. Results are given as a function
of haplotype relative risk due to allele 1, where the population fre-
quency of allele 1 is p.

methods described above are based on an ability to infer
gametic phase. If one is interested only in whether a
polymorphism is causal or not—that is, interested in
fitting models on the basis of the main effects of the
genotypes at L polymorphisms—one could argue that
phase and, hence, haplotype determination are irrele-
vant. (This contrasts with linkage disequilibrium map-
ping of a single polymorphism, when one is indeed in-
terested in determining an ancestral haplotype to localize
the functional polymorphism.) The advantage of ignor-
ing phase is that it allows us to use families that would
be discarded in the previous two methods. In this case,
we define the subsets S differently, not according to pa-
rental phase. Given , , and , we define to beG G G tm f c l

the genotype consisting of the transmitted alleles and
to be the genotype consisting of the untransmittedul

alleles, at locus l. For the affected child, therefore, istl

the unphased genotype at that locus, and can be cal-ul

culated as the genotype made up from the two parental
alleles “left over” when the transmitted alleles are re-
moved from the set of four parental alleles at that locus.
We define vectors and as andt u t p (t ,t , … ,t ) u p1 2 L

. We now define S, the set to be conditioned(u ,u , … ,u )1 2 L

on, as . A priori, and are equiprobable,S p {t,u} t u
because, if occurs in any phase-specific subset , mustt S ui

also occur in ; thus, different probabilities of differentSi

phases cannot result in different prior probabilities for
and . With this conditioning, only two terms appeart u

in the denominator of equation (5), corresponding to
the (unphased) genotypes of the index case and a single
pseudocontrol whose unphased genotypes at each locus
are made up from the untransmitted alleles from each
parent. For example, suppose that a family is typed at
three SNPs, with the father having genotypes (1/1, 1/2,
and 1/2) at loci (1, 2, and 3), respectively; the mother
having genotypes (1/2, 1/2, and 1/2); and the affected
offspring having genotypes (1/1, 1/2, and 1/2). This fam-
ily would not be used in methods 1 or 2 above, since
the parental haplotypes cannot be determined. Ignoring
phase, however, we have a single case with genotypes
(1/1, 1/2, and 1/2) and a single matched pseudocontrol
with genotypes (1/2, 1/2, and 1/2). Writing the genotype
relative risks for genotype (i, j, and k) at loci (1, 2, and
3) as , we therefore have a likelihood contri-R(i, j, k)
bution, for this family, of

R(1/1, 1/2, 1/2)
.

R(1/1, 1/2, 1/2) � R(1/2, 1/2, 1/2)

Note that this likelihood will only be valid for fitting
models in which relative risk does not depend on phase.

Method 4. Conditioning according to method 2 when
phase is deducible and to method 3 otherwise.—Use of
a single, matched pseudocontrol instead of as many as

three matched pseudocontrols might be expected to re-
duce efficiency for families where parental haplotypes
can, in fact, be determined. For instance, if a single locus
is being considered, with parental genotypes , , anda/b c/d
affected offspring genotype , method 3 uses a singlea/c
pseudocontrol with genotype and ignores the andb/d a/d

pseudocontrols. A maximally efficient set of casesb/c
and pseudocontrols can be obtained by use of condi-
tioning method 4, which consists of using the strategy
of method 2 when parental phase is deducible and
method 3 otherwise. In this case, the method for con-
structing conditioning sets S will differ from family to
family, being determined only after observation of

. This strategy allows every family to be used,G , G , Gm f c

generating one case and between one and three pseu-
docontrols for each family, regardless of whether paren-
tal phase can be determined. Again, this method will
only be valid for fitting models in which relative risk
does not depend on phase.

The relative efficiencies of methods 3 and 4 can be
calculated analytically in simple situations (from con-
sideration of the relative variances of the parameter es-
timates, as calculated from the expected information ma-
trix). For example, figure 1 shows the relative efficiency
of method 4, compared with method 3, when a single
diallelic locus is considered. The relative efficiency de-
pends on the allele frequency and haplotype relative risk
associated with allele 1. Note that, as the relative risk
approaches 1, the relative efficiency also approaches 1,
so there is no loss of efficiency with method 3 when
testing the null hypothesis of no effect. For higher values
of the haplotype relative risk, however, depending on
the allele frequencies, method 4 can be substantially
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more efficient than method 3, suggesting that in these
cases there will be an advantage in using method 4.

Stepwise Regression Procedure

We evaluate the effects of the individual polymor-
phisms using exactly the same stepwise approach as de-
scribed for case/control data. We write orP(DFg)

as being proportional to genotype relative risksP(DFG)
or . A convenient parameterization (SchaidR(g) R(G)

1996) is

Tb xR(g) p e ,

where is the coded genotype for the case or pseudo-x
control. Note that in this parameterization, sinceb p 00

risks are all evaluated relative to an arbitrary reference
genotype. If method 1 is used and we are willing to
assume a multiplicative model, we may instead code ac-
cording to haplotypes instead of genotypes, using hap-
lotypes or “chromosomes” transmitted by the two par-
ents as independent data points. In either case, by
considering the fit of a series of nested models, we can
again evaluate the effect of individual polymorphisms
once other polymorphisms have already been accounted
for.

The CETDT proposed by Koeleman et al. (2000) uses
a similar procedure to evaluate the effect of a polymor-
phism while taking into account effects at other loci.
However, the CETDT compares the fit of models where
all genotype effects (or haplotype effects, under a mul-
tiplicative model) are estimated, instead of fitting only
the main effects of loci. This results in a test with a much
larger number of degrees of freedom than the tests pro-
posed here. Consequently, the procedure described here
is likely to have much higher power for evaluation of
the main effects of polymorphisms. We illustrate the dif-
ference between the parameterizations in table 1, under
the assumption that we are interested in evaluating the
effect of a third SNP while taking into account effects
at two other SNPs. For the genotype test, the CETDT
would test a model with 26 parameters against a null
model with 8 parameters, resulting in an 18-df test. This
contrasts with the proposed regression procedure, which
tests a model with six parameters against a null model
with four parameters (allowing for dominance), result-
ing in a 2-df test. Note that, if desired, the full 26-pa-
rameter model or any intermediate models could also
be fitted in the regression procedure by including statis-
tical interaction terms in the model. For the haplotype
test, the CETDT would compare models with seven and
three parameters, resulting in a 4-df test, whereas the
proposed regression procedure compares models with
three and two parameters, resulting in a 1-df test. The

parameterization shown in table 1 illustrates that, even
when testing haplotypes, the proposed coding for the
regression method results in likelihood contributions for
the case, given its (unphased) genotype, that are identical
for the different possible haplotypes in the parents. This
reflects the fact that the coding system models the prob-
ability of being affected with disease only as a function
of the (unphased) genotypes. Likelihood contributions
for the pseudocontrols will, however, depend on the pa-
rental haplotypes (through the resulting pseudocontrol
genotypes), except for regression method 3, in which
only the single pseudocontrol with genotypes con-
structed from the untransmitted parental alleles is used.

Sibships with Multiple Affected Sibs

The approaches described here for case/control and
family-based analyses can all be extended to situations
where there is more than one affected offspring per ped-
igree. These offspring cannot be used as independent
observations in a test of association, because there is
likely to be linkage to disease in the region (i.e., the same
alleles are likely to be transmitted to any affected off-
spring). Martin et al. (1997) have overcome this problem
by devising a test for association that uses data from all
affected offspring in a sibship. A natural way to imple-
ment this in the context of the regression methods de-
scribed here is to test the fit of nested hypotheses using
a Wald test rather than a likelihood-ratio test. A robust
“information-sandwich” estimate of the variance/covar-
iance matrix for b (Huber 1967; White 1982) may be
obtained, which allows us to perform the Wald test while
accounting for the nonindependence between affected
siblings in the same family.

Missing Data and Ambiguous Haplotypes

Use of standard statistical packages for stepwise lo-
gistic and conditional logistic-regression forces some
limitations in the treatment of missing data. Most pack-
ages will only include in the analysis individuals (i.e.,
cases, controls, or pseudocontrols) who are fully geno-
typed at every locus that can potentially contribute to
the current model. If large numbers of polymorphisms
are to be considered for inclusion—even if the rate of
missing data at each locus is low—the proportion of
individuals who have missing genotypes at one or more
loci and therefore must be discarded from the analysis
can be quite high. If different sample sizes are used for
different model comparisons, to use the maximal
amount of information available for that comparison,
the powers of the different steps in the model-building
procedure may vary. This would make it difficult to truly
compare the significances of adding or deleting terms at
different stages. For this reason, in our HLA analyses



Table 1

Parameterization for Genotype Relative Risks Used by Different MethodsR(g)

CASE GENOTYPE

AT LOCI 1, 2, 3 RESULTING HAPLOTYPES

GENOTYPE TEST HAPLOTYPE TEST

Regression
Method CETDT Regression Method CETDT

Null Alt Null Alt Null Alt Null Alt

1/1, 1/1, 1/1 111/111 1 1 1 1 1 1 1 1
1/1, 1/1, 1/2 111/112 1 b5e 1 R111112 1 b3e 1 1 7 R112

1/1, 1/1, 2/2 112/112 1 b6e 1 R111122 1 b b3 3e 7 e 1 R 7 R112 112

1/1, 1/2, 1/1 111/121 b3e b3e R1112 R111211
b2e b2e R12 1 7 R121

1/1, 1/2, 1/2 111/122 or 112/121 b3e b �b3 5e R1112 R111212
b2e b �b2 3e R12 or a1 7 R R 7 R122 112 121

1/1, 1/2, 2/2 112/122 b3e b �b3 6e R1112 R111222
b2e b b �b3 2 3e e R12 R 7 R112 122

1/1, 2/2, 1/1 121/121 b4e b4e R1122 R112211
b b2 2e e b b2 2e e R 7 R12 12 R 7 R121 121

1/1, 2/2, 1/2 121/122 b4e b �b4 5e R1122 R112212
b b2 2e e b b �b2 2 3e e R 7 R12 12 R 7 R121 122

1/1, 2/2, 2/2 122/122 b4e b �b4 6e R1122 R112222
b b2 2e e b �b b �b2 3 2 3e e R 7 R12 12 R 7 R122 122

1/2, 1/1, 1/1 111/211 b1e b1e R1211 R121111
b1e b1e R21 1 7 R211

1/2, 1/1, 1/2 111/212 or 112/211 b1e b �b1 5e R1211 R121112
b1e b �b1 3e R21 or a1 7 R R 7 R212 112 211

1/2, 1/1, 2/2 112/212 b1e b �b1 6e R1211 R121122
b1e b b �b3 1 3e e R21 R 7 R112 212

1/2, 1/2, 1/1 111/221 or 121/211 b �b1 3e b �b1 3e R1212 R121211
b �b1 2e b �b1 2e orR R 7 R22 12 21 or a1 7 R R 7 R221 121 211

1/2, 1/2, 1/2 111/222 or 112/221 or 121/212 or 211/122 b �b1 3e b �b �b1 3 5e R1212 R121212
b �b1 2e b �b �b1 2 3e orR R 7 R22 12 21 or or or a1 7 R R 7 R R 7 R R 7 R222 112 221 121 212 211 122

1/2, 1/2, 2/2 112/222 or 122/212 b �b1 3e b �b �b1 3 6e R1212 R121222
b �b1 2e b �b �2b1 2 3e orR R 7 R22 12 21 or aR 7 R R 7 R112 222 122 212

1/2, 2/2, 1/1 121/221 b �b1 4e b �b1 4e R1222 R122211
b b �b2 1 2e e b b �b2 1 2e e R 7 R12 22 R 7 R121 221

1/2, 2/2, 1/2 121/222 or 122/221 b �b1 4e b �b �b1 4 5e R1222 R122212
b �2b1 2e b �2b �b1 2 3e R 7 R12 22 or aR 7 R R 7 R121 222 122 221

1/2, 2/2, 2/2 122/222 b �b1 4e b �b �b1 4 6e R1222 R122222
b b �b2 1 2e e b �b b �b �b2 3 1 2 3e e R 7 R12 22 R 7 R122 222

2/2, 1/1, 1/1 211/211 b2e b2e R2211 R221111
b b1 1e e b b1 1e e R 7 R21 21 R 7 R211 211

2/2, 1/1, 1/2 211/212 b2e b �b2 5e R2211 R221112
b b1 1e e b b �b1 1 3e e R 7 R21 21 R 7 R211 212

2/2, 1/1, 2/2 212/212 b2e b �b2 6e R2211 R221122
b b1 1e e b �b b �b1 3 1 3e e R 7 R21 21 R 7 R212 212

2/2, 1/2, 1/1 211/221 b �b2 3e b �b2 3e R2212 R221211
b b �b1 1 2e e b b �b1 1 2e e R 7 R21 22 R 7 R211 221

2/2, 1/2, 1/2 211/222 or 212/221 b �b2 3e b �b �b2 3 5e R2212 R221212
2b �b1 2e 2b �b �b1 2 3e R 7 R21 22 or aR 7 R R 7 R211 222 212 221

2/2, 1/2, 2/2 212/222 b �b2 3e b �b �b2 3 6e R2212 R221222
b b �b1 1 2e e b �b b �b �b1 3 1 2 3e e R 7 R21 22 R 7 R212 222

2/2, 2/2, 1/1 221/221 b �b2 4e b �b2 4e R2222 R222211
b �b b �b1 2 1 2e e b �b b �b1 2 1 2e e R 7 R22 22 R 7 R221 221

2/2, 2/2, 1/2 221/222 b �b2 4e b �b �b2 4 5e R2222 R222212
b �b b �b1 2 1 2e e b �b b �b �b1 2 1 2 3e e R 7 R22 22 R 7 R221 222

2/2, 2/2, 2/2 222/222 b �b2 4e b �b �b2 4 6e R2222 R222222
b �b b �b1 2 1 2e e b �b �b b �b �b1 2 3 1 2 3e e R 7 R22 22 R 7 R222 222

NOTE.—Test is of whether locus 3 is involved once loci 1 and 2 have been accounted for. “Alt” p alternative model.
a Depends on which haplotypes are inferred in the parents.
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Table 2

Size of Data Sets Generated Using Different Methods

METHOD

MULTIALLELIC CODING DIALLELIC CODING

Cases Pseudocontrols Total Cases Pseudocontrols Total

1 156 468 624 112 336 448
2 209 521 730 190 414 604
3 247 247 494 247 247 494
4 247 559 806 247 471 718
CETDTa 312 312 624 224 224 448

a CETDT sample sizes refer to chromosomes rather than individuals.

below, we limit families to those that are fully typed at
all five loci of interest or those in which both parents
are homozygous for any locus at which the child is un-
typed. In practice, missing genotypes could be inferred
and the uncertainty of such inference addressed by mul-
tiple imputation (Schafer 1997), the high level of LD
within a gene ensuring that there will be little variation
between imputations. A reasonable (although more com-
plicated) strategy, therefore, might be to use multiple
imputation to generate imputed complete data sets and
then to analyze these in a standard statistical-analysis
package.

A related problem occurs with family data when meth-
ods 1 and 2 are used. In this case, since phase is more
easily resolved in haplotypes consisting of a few loci than
in extended haplotypes containing many loci, to generate
the maximum information for a particular test in the
stepwise procedure, one would have to generate a dif-
ferent set of cases and pseudocontrols, depending on
which set of markers are currently being tested. How-
ever, this is somewhat tortuous and, moreover, results
in a different-sized data set and, therefore, in a different
power to select or reject a locus depending on which
stage in the stepwise-regression procedure we have
reached. Note that this problem does not occur when
method 3 is used, since no attempt is made to infer
haplotypes or to resolve phase. In our HLA analyses
below, we decided to use all five loci of interest to infer
parental phase and used this data set even when ana-
lyzing just a subset of the loci. However, had we started
with a much larger number of loci of interest, this ap-
proach would not have been satisfactory, since families
in which phase could be resolved for a subset of the loci,
but not for the whole set of loci, would not be used,
even for analysis with the subset. In this case, use of
multiple imputation methods, this time for inferring the
fully phased genotypes of individuals, might again be
suggested.

Results

The methods described here were used to evaluate the
contributions of five polymorphisms in the HLA region

to type 1 diabetes, using family data consisting of 353
trios of parents with a single affected offspring. These
data were previously analyzed by Zavattari et al. (2001),
using a variation of the haplotype method. (Note that
the analysis by Zavattari et al. [2001] included an ad-
ditional 32 multiplex families, with two affected chil-
dren, that are not included here.) Families were typed
at the loci HLA-DRB1, HLA-DQB1, DMB, DOB, and
TNFc. For a family to be included in the analysis, we
required that it be fully typed at all five loci of interest
or that both parents be homozygous at any locus at
which the child was untyped. This resulted in a final
data set consisting of 247 trios, all of which could be
used for methods 3 and 4. For methods 1 and 2, only
those trios in which the five-locus parental haplotypes
could be determined unambiguously could be used, with
method 2 being further restricted to those trios in which
at least one pseudocontrol would resolve phase, and
method 1 even further restricted to those trios in which
all pseudocontrols would resolve phase. Analysis was
carried out using software written by the authors (see
our Web site) for implementation within the statistical
package Stata. The sizes of the resulting data sets avail-
able for the regression analysis are shown in columns
2–4 of table 2. Since the loci DRB1, DQB1, and DMB
are relatively polymorphic, it was possible to resolve
phase in a fairly large proportion of families, although
not necessarily with all pseudocontrols. The final num-
bers of families retained when methods 1 and 2 were
used were 156 and 209, respectively, compared to 247
for methods 3 and 4. This represents a minor loss of
data when method 2 is used but a fairly severe loss with
method 1. Methods 1 and 2 do, however, produce a
larger number of pseudocontrols than method 3 (since
each case in method 3 is matched to exactly one pseu-
docontrol, whereas, in method 1 and in some families
for method 2, each case is matched to three pseudocon-
trols). Method 4 generates the largest data set, consisting
of exactly one case and between one and three pseu-
docontrols from every family.

Although haplotypes were constructed using the full
multiallelic coding for loci DRB1, DQB1, and DMB,
for the regression analysis, the alleles were recoded in
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Table 3

Likelihood-Ratio Tests of Main Effects in a Forward Stepwise-Regression Procedure

NULL

MODEL

ALTERNATIVE

MODEL

METHOD 1 METHOD 2 METHOD 3 METHOD 4

2x df P 2x df P 2x df P 2x df P

… A 76.89 2 0a 117.10 2 0a 120.09 2 0a 124.92 2 0a

… B 62.21 2 0a 105.73 2 0a 98.86 2 0a 101.06 2 0a

… C .05 2 .97 1.12 2 .57 1.53 2 .47 1.96 2 .37
… D 9.72 2 .008 8.57 2 .01 9.62 2 .008 9.62 2 .008
… E 15.79 2 .0004 44.53 2 �102 # 10 38.79 2 �94 # 10 38.79 2 �94 # 10

A A�B .86 2 .65 2.67 2 .26 5.68 2 .06 1.98 2 .37
A A�C 3.61 2 .16 3.26 2 .20 2.05 2 .36 3.49 2 .17
A A�D 13.33 2 .001 14.55 2 .0007 11.25 2 .004 17.36 2 .0002
A A�E .34 2 .85 2.11 2 .35 3.16 2 .21 1.88 2 .39
A�D A�D�B 1.68 2 .43 3.10 2 .21 5.66 2 .06 2.56 2 .28
A�D A�D�C 1.31 2 .52 .59 2 .75 .53 2 .77 .76 2 .69
A�D A�D�E .92 2 .63 2.21 2 .33 3.09 2 .21 1.99 2 .37
A*D A*D�B 2.21 2 .33 2.79 2 .25 6.75 2 .03 3.66 2 .16
A*D A*D�C .65 2 .72 .60 2 .74 .32 2 .85 .61 2 .74
A*D A*D�E 1.10 2 .58 2.52 2 .28 3.55 2 .17 2.51 2 .28
A�B�D A�B�D�C 1.14 2 .57 .42 2 .81 .27 2 .87 .59 2 .74
A�B�D A�B�D�E .83 2 .66 2.36 2 .31 2.54 2 .28 1.64 2 .44
A*B*D A*B*D�C .58 2 .75 .34 2 .84 .03 2 .99 .23 2 .89
A*B*D A*B*D�E .73 2 .69 2.02 2 .36 2.62 2 .27 1.57 2 .46

NOTE.— , , , , and .A p DRB1 B p DQB1 C p DMB D p DOB E p TNFc
a .�10! 1 # 10

a binary fashion in order to evaluate effects of a single
allele of interest compared to all other alleles. Following
Zavattari et al. (2001), the alleles examined were
DRB1*0301, DQB1*0201, and DMB*0101. DOB
and TNFc were already effectively diallelic with alleles
1 and 2 at DOB and 167 and 169 at TNFc. If recoding
were carried out prior to haplotype determination, it
would decrease the phase information and, thus, the
number of cases and pseudocontrols produced by meth-
ods 1 and 2. Columns 5–7 of table 2 show the resulting
sample sizes if binary recoding is carried out prior to
haplotype determination. These data show a marked
decrease in sample size for methods 1 and 2. It is clearly
preferable to use a multiallelic coding at the haplotype
determination stage. However, depending on the mark-
ers available, this may not be possible. Table 2, there-
fore, gives an indication of the loss of information to
be expected for methods 1 and 2 when diallelic markers
such as SNPs are used.

The results of various tests in the stepwise regression
procedure are given in tables 3, 4, 5, and 6. For con-
venience, we have denoted the loci DRB1, DQB1,
DMB, DOB, and TNFc as A, B, C, D, and E, respec-
tively. Results are shown for methods 1–4, fitting full
genotype (i.e., including dominance) but no haplotype
effects at the loci being considered. The notation used
is standard statistical modeling notation—so that, for
example, “A” denotes a 2-df model with main effects
at locus A only; “A�B” denotes a 4-df model with main
effects at loci A and B only; “A*B” denotes an 8-df

model with main effects at A and B, plus statistical
interactions between them (i.e., accounting for the “full
genotype effect” of A and B but no haplotype effects);
and “A*B�C” denotes a 10-df model with main effects
and statistical interactions at A and B and also main
effects at C. Also shown in table 5 are results for method
1, under the assumption of a multiplicative model for
loci and alleles, so that the factorization of equation (3)
applies. For the tests in table 5, use of this procedure
is equivalent to use of the CETDT. Overall, we find that
methods 1–4 give broadly similar results, except that P
values generally increase in significance across methods
1–4, as expected with the increase in sample size of the
ensuing case/pseudocontrol data sets. Results from the
CETDT are also similar—but recall that, for this pro-
cedure to be valid, multiplicative effects must be as-
sumed. Since method 4 is based on the largest number
of individuals, we use this as our reference method while
noting where the results differ substantially from those
obtained by use of methods 1–3.

Table 3 shows the results of testing the main effects
of a locus in a forward stepwise regression procedure.
At the first stage (rows 1–5) we see that all loci except
C (DMB) appear to be significant when included in the
model on their own i.e. without accounting for effects
at any other loci, equivalent to carrying out a single-
locus analysis. Once A (DRB1) is included (rows 6–9),
only D (DOB) has a significant main effect. Once A
and D are included as main effects (rows 10–12) only
method 3 suggests borderline significant main effects at
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Table 4

Likelihood-Ratio Tests of Main Effects in a Backward Stepwise Regression Procedure

NULL

MODEL

ALTERNATIVE

MODEL

METHOD 1 METHOD 2 METHOD 3 METHOD 4

2x df P 2x df P 2x df P 2x df P

B�C�D�E A�B�C�D�E 15.55 2 .0004 11.68 2 .003 20.63 2 �53 # 10 23.31 2 �69 # 10
A�C�D�E A�B�C�D�E 1.42 2 .49 3.12 2 .21 4.98 2 .08 2.11 2 .35
A�B�D�E A�B�C�D�E 1.15 2 .56 .24 2 .87 .18 2 .91 .43 2 .81
A�B�C�E A�B�C�D�E 12.41 2 .002 12.52 2 .002 9.82 2 .007 15.49 2 .0004
A�B�C�D A�B�C�D�E .84 2 .66 2.18 2 .34 2.45 2 .29 1.48 2 .48
B*C*D*E B*C*D*E�A 12.30 2 .002 10.74 2 .005 14.03 2 .0009 25.37 2 �63 # 10
A*C*D*E A*C*D*E�B .66 2 .72 2.01 2 .37 2.19 2 .34 1.47 2 .48
A*B*D*E A*B*D*E�C .43 2 .81 .88 2 .65 .25 2 .88 .42 2 .81
A*B*C*E A*B*C*E�D 12.02 1 .0005 11.14 2 .004 9.83 2 .007 13.22 2 .001
A*B*C*D A*B*C*D�E 1.40 2 .50 2.08 2 .35 2.48 2 .29 .93 2 .63
B�D A�B�D 18.57 2 .0001 16.60 2 .0002 29.50 2 �74 # 10 29.27 2 �74 # 10
A�D A�B�D 1.68 2 .43 3.10 2 .21 5.66 2 .06 2.56 2 .28
A�B A�B�D 14.16 2 .0008 14.97 2 .0006 11.23 2 .004 17.94 2 .0001
D A�D 80.50 2 0a 123.08 2 0a 121.73 2 0a 132.66 2 0a

A A�D 13.33 2 .001 14.55 2 .0007 11.25 2 .004 17.36 2 .0002

NOTE.— , , , , and .A p DRB1 B p DQB1 C p DMB D p DOB E p TNFc
a .�10! 1 # 10

B (DQB1) ( vs. ; ). If the fullA � D � B A � D P p .06
(main and interaction) effects of A and D are included
(rows 13–15), again, only method 3 suggests borderline
significant main effects at B (A*D�B vs. A*D, P p

). Once A, D, and B have all been included in the.03
model, no other loci show significant main effects (rows
16–19). This conclusion is supported by a backwards
stepwise procedure (selected steps shown in table 4).
Only loci A and D are significant when the main effects
at all other loci have been included (rows 1–5; P p

for locus A, for locus D). Also,�69 # 10 P p .0004
only loci A and D are significant when the full effect of
all other loci has been included (rows 6–10; P p 3 #

for locus A, for locus D). Continuing�610 P p .001
with the backwards stepwise procedure, the final model
from method 4 is one with main effects at A (DRB1)
and D (DOB) only. Neither locus can be deleted from
this model without significantly worsening the fit (final
two rows of table 4). With method 3, the final model
could include locus B (DQB1) with borderline signifi-
cance (rows 11–13, , , and�7P p 4 # 10 P p .06 P p

, for worsening the fit when removing loci A, B,.004
and D, respectively). Note that locus B (DQB1) along
with DRB1 (locus A) is believed to be a major deter-
minant of the IDDM1/HLA locus in type 1 diabetes
(Cucca et al. 2001b). However, the relative contribu-
tions of DQB1 and DRB1 depend on the relative fre-
quencies of alleles and haplotypes at these loci in each
specific population. Sardinia has a unique distribution
of DRB1*04 subtype alleles and the highest population
frequency of DR3 in the world, giving rise to a reduced
relative contribution of the B (DQB1) locus in this
population.

After main effects have been detected at A (DRB1),

D (DOB), and, possibly, B (DQB1), it is of interest to
fit interaction models to examine the full effect (i.e.,
main effect and/or statistical interactions with loci al-
ready included in the model) of the various loci (table
5). Once A has been included in the model, there is
evidence for an effect at C and/or D ( for A*CP p .02
vs. A; for A*D vs. A). Once A and D�7P p 2 # 10
have both been included, there is evidence for an effect
at C (A*D*C vs. A*D; ) and possibly at BP p .008
with method 3 (A*D*B vs. A*D; ). Once A, B,P p .04
and D are included, there is still evidence for an effect
at C (A*B*C*D vs. A*B*D; ). Interestingly,P p .007
with method 3, from the final five rows of table 5, we
find that the full model A*B*C*D*E fits significantly
better than any of the nested four-locus interaction mod-
els, suggesting that each of the loci makes a contribution
to disease even when accounting for the full genotype
contribution of the other four loci ( ,�5P p 3 # 10

, , , and for lociP p .02 P p .0006 P p .0004 P p .01
A–E, respectively. (With method 4, the evidence for the
contribution of E is not significant, possibly because of
the greater number of degrees of freedom.) These results
should be interpreted with caution, because of the large
number of estimated parameters and degrees of freedom
for each test. This problem could potentially be over-
come by use of a permutation procedure (Hirji et al.
1987, 1988). However, as presented, the results are con-
sistent with those of Zavattari et al. (2001), who also
showed that each of these five loci had a significant
effect when considered on a particular background of
alleles at two or three other loci. The difference here is
that we are considering the contribution conditional on
effects at all four other loci and regardless of which
particular alleles are present at the loci.



138 Am. J. Hum. Genet. 70:124–141, 2002

Table 5

Likelihood-Ratio Combined Tests of Main Effects plus Interactions in a Stepwise-Regression Procedure

NULL

MODEL

ALTERNATIVE

MODEL

METHOD 1 METHOD 2 METHOD 3 METHOD 4 CETDT

2x df P 2x df P 2x df P 2x df P 2x df P

A A*B 6.40 4 .17 7.39 4 .12 5.74 3 .13 5.62 4 .23 7.22 2 .03
A A*C 11.16 6 .08 12.09 6 .06 10.79 6 .10 14.83 6 .02 13.60 2 .001
A A*D 20.55 4 .0004 33.46 5 �63 # 10 28.12 5 �53 # 10 38.95 5 �72 # 10 24.45 2 �65 # 10
A A*E 3.05 6 .80 6.27 6 .39 9.46 6 .15 5.28 6 .51 1.79 2 .41
A*D A*D*B 10.19 6 .12 10.98 6 .09 11.86 5 .04 10.84 6 .09 14.00 3 .003
A*D A*D*C 15.43 11 .16 18.59 13 .14 28.56 13 .008 28.42 13 .008 12.42 3 .006
A*D A*D*E 11.88 12 .46 11.46 14 .65 11.07 13 .60 11.01 14 .69 3.15 4 .53
A*B*D A*B*C*D 21.28 16 .17 26.18 18 .10 29.00 16 .02 36.13 18 .007 9.29 4 .05
A*B*D A*B*D*E 25.08 20 .20 24.47 22 .32 22.81 19 .25 30.96 23 .12 5.66 7 .58
B*C*D*E A*B*C*D*E 32.12 19 .03 38.73 19 .005 42.17 12 �53 # 10 61.21 21 �68 # 10 10.04 8 .26
A*C*D*E A*B*C*D*E 21.05 20 .39 26.66 20 .15 25.26 13 .02 36.64 22 .03 10.65 8 .22
A*B*D*E A*B*C*D*E 36.04 30 .21 51.34 32 .02 55.98 26 .0006 55.24 34 .01 12.90 8 .12
A*B*C*E A*B*C*D*E 38.90 26 .05 54.11 31 .006 53.92 24 .0004 68.07 31 .0001 28.32 8 .0004
A*B*C*D A*B*C*D*E 39.84 34 .23 49.62 36 .06 49.80 29 .01 50.07 39 .11 9.28 11 .60

NOTE.— , , , , and .A p DRB1 B p DQB1 C p DMB D p DOB E p TNFc

The fact that loci C (DMB) and E (TNFc) appear to
be significant when tested in interaction with the other
loci, but not when tested as main effects, suggests that
it is loci A (DRB1), D (DOB) and, possibly, B (DQB1)
that have the primary etiological effects in this Sardinian
population, whereas C and E have modifying or inter-
action effects on the A-B-D contribution. This inter-
pretation assumes that all functional polymorphisms in
the region are available for inclusion in the model (i.e.,
all would be included in the first stage of a backwards
stepwise procedure). If there are functional polymor-
phisms in the region not included in the procedure, de-
tection of the main effect at A, for instance, may in fact
correspond to a main effect at another locus—say,
X—which is not included in the procedure but which
is in strong LD with A. Detection of the interaction
effect but not a main effect at C, say, may correspond
equally to a main effect at X, which—because of LD
with A, B, and C—results in a complex interaction
A*B*C when X is not included in the model. Indeed,
the entire effect of all five loci could potentially be ex-
plained by complex patterns of LD with an unknown
polymorphism X. (This observation is a feature of the
data rather than of the analysis method used; i.e., this
would also be true for use of any of the methods pre-
viously described, such as the haplotype method, the
homozygous parent TDT, the CETDT, or the methods
of Cucca et al. [2001a] and Zavattari et al. [2001].) We
can, however, address this issue by examining the
sources of the interaction terms in analysis of a phase-
known data set, using method 2, for example. Table 6
shows the results of adding two-way interaction terms
to the main effects model A�B�D (with interaction
between A and B denoted “A.B,” etc.). We find a sig-
nificant interaction term in either A.D or B.D (P p

and , respectively); once one of these.0003 P p .0006

interactions has been included, the other is not signifi-
cant. The interaction could be independent of phase (an
epistatic interaction) or could be restricted to loci on
the same chromosome (a haplotype effect). If there is a
significant haplotype effect, it would suggest that the
interaction effect is in fact partly due to LD with another
locus—say, X—not included in the current model. We
can test this, in a phase-known data set, by including
in the regression procedure an indicator variable, ,dij

that indicates when an individual who is doubly het-
erozygous, at loci i and j, has the associated alleles at
the two loci occurring on the same parental chromo-
some—that is, in coupling. This provides a 1-df test of
whether there are, in fact, haplotype effects. From table
6, we find that the A.D and B.D interactions do, in fact,
each incorporate significant haplotype effects (P p

and , respectively). It therefore seems�5.002 P p 1 # 10
likely that there is another functional polymorphism in
the region, apart from A (DRB1), D (DOB) and B
(DQB1). This additional polymorphism is unlikely to
correspond to C (DMB) or E (TNFc), since these loci
did not have significant main effects in the regression
procedure. Indeed, even when the main effects of these
loci are included, the terms and remain signif-d dAD BD

icant (table 6; and , respectively),P p .003 P p .0002
suggesting that there is another functional polymor-
phism, X, that is not accounted for by any of A, B, C,
D, or E. If this polymorphism X were included in the
model, it could potentially explain the observed pattern
of significance at any or all of A, B, C, D, and E.

Discussion

We have presented a procedure for evaluating the rel-
ative contribution to disease of variants within a small
genetic region showing strong intermarker LD and for
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Table 6

Likelihood-Ratio Tests of Main Effects plus Two-Way Interactions in a
Stepwise-Regression Procedure

NULL MODEL ALTERNATIVE MODEL

METHOD 2

2x df P

A�B�D A�B�D�A.B 5.13 2 .08
A�B�D A�B�D�A.D 18.61 3 .0003
A�B�D A�B�D�B.D 17.30 3 .0006
A�B�D�A.D A�B�D�A.D�B.D 3.12 2 .21
A�B�D�A.D A�B�D�A.D� dAD 9.47 1 .002
A�B�D�B.D A�B�D�B.D�A.D 4.43 2 .11
A�B�D�B.D A�B�D�B.D� dBD 18.86 1 �51 # 10
A�B�C�D�E A�B�C�D�E�A.B … 0 …
A�B�C�D�E A�B�C�D�E�A.C 8.99 4 .06
A�B�C�D�E A�B�C�D�E�A.D 18.99 2 .0001
A�B�C�D�E A�B�C�D�E�A.E 2.87 4 .58
A�B�C�D�E A�B�C�D�E�B.C 7.27 4 .12
A�B�C�D�E A�B�C�D�E�B.D 17.98 2 .0001
A�B�C�D�E A�B�C�D�E�B.E 4.31 4 .37
A�B�C�D�E A�B�C�D�E�C.D 7.27 4 .12
A�B�C�D�E A�B�C�D�E�C.E 4.96 4 .29
A�B�C�D�E A�B�C�D�E�D.E 2.00 3 .57
A�B�C�D�E�A.D A�B�C�D�E�A.D�B.D 2.94 2 .23
A�B�C�D�E�A.D A�B�C�D�E�A.D� dAD 8.60 1 .003
A�B�C�D�E�B.D A�B�C�D�E�B.D�A.D 3.94 3 .27
A�B�C�D�E�B.D A�B�C�D�E�B.D� dBD 18.26 1 .0002

NOTE.— , , , , and .A p DRB1 B p DQB1 C p DMB D p DOB E p TNFc dij

refers to the variable measuring haplotype effects (see text).

determining which of these variants are likely to be of
primary etiological importance. Although the statistical
methodology described is not new, very rarely have such
stepwise regression procedures been applied in the con-
text of analysis of multilocus haplotypes or genotypes
in the human genetics literature. This is surprising, since
these methods offer considerable advantages over tests
that simply examine association between genotype and
disease at each locus in turn, while stratifying by effects
at other loci. The regression approach allows the effect
at a locus to be examined, conditional on whatever al-
leles are present at the other loci, without assuming par-
ticular values for these alleles. By fitting different models
that include main effects and/or statistical interactions,
a high degree of flexibility can be achieved for testing a
wide variety of null hypotheses. This model framework
includes as a subset tests that have been previously pro-
posed in the literature; for example, when method 1 is
used and multiplicative effects are assumed, tests of full
nested interaction models (such as A*B*C vs. A*B) are
essentially equivalent to the CETDT proposed by Koe-
leman et al. (2000). Such tests typically have large num-
bers of degrees of freedom because of the large number
of estimated parameters, and use of main-effects models
instead can offer advantages in terms of the fewer de-
grees of freedom required for each individual test. The
regression approach also allows modeling of full geno-
type effects rather than simply allelic effects (which rely

on the multiplicative assumption, to consider individual
parental contributions separately). Consideration of in-
dividual parental haplotypes does have the advantage of
allowing inclusion of families where one parent is typed
but the other is untyped at some or all markers. How-
ever, care is needed to avoid bias when including such
families (Knapp 1999).

Construction of haplotypes in family data is not a
trivial problem, either conceptually or computationally.
Although software tools for studying haplotypic asso-
ciations are now emerging (Clayton 1999; Dudbridge
et al. 2000), there are still numerous issues concerning
the number of loci to be used for haplotype determi-
nation, whether recoding of alleles may be required, and
the unbiased treatment of missing data or ambiguous
haplotypes (Knapp 1999; Dudbridge et al. 2000). Meth-
ods that involve determination of haplotypes (such as
methods 1 and 2 described here) have the advantage
that they can be used to fit models for the full genotype
and haplotype interaction effects of loci. This can be of
interest for characterization of the genetic effects or the
pattern of LD in a region. However, for detection of
loci of primary functional importance (i.e., regardless
of other effects in the region), genotypes rather than
haplotypes are likely to be most relevant. We therefore
propose a method (method 3) that allows analysis of
genotype effects only, without determination of the hap-
lotypes present in the data set. This method has the
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advantage of making full use of the available families,
requiring only that parents and affected offspring be
typed at all loci of interest, not that parental phase be
known. Method 3 is computationally trivial compared
with methods 1 and 2, requiring consideration of each
locus individually, rather than in haplotype combina-
tion, for the construction of cases and pseudocontrols.
However, method 3 does not make use of the infor-
mation from three (as opposed to one) pseudocontrols,
when these are available. We therefore also propose an
additional method (method 4), which consists of using
method 2 for construction of pseudocontrols in families
where phase is inferable and method 3 in families where
phase is not inferable.

In genotype analysis of real data for type 1 diabetes,
methods 2-4 performed similarly in a data set with poly-
morphic markers in which parental phase was mostly
inferable. Our analysis of the HLA-DRB1, HLA-
DQB1, DMB, DOB, and TNFc loci in type 1 diabetic
families confirmed the results of Zavattari et al. (2001),
suggesting that each of these loci is important in causing
disease, even when simultaneously accounting for ef-
fects at the other loci. However, only loci DRB1, DOB,
and possibly DQB1 appeared to have primary effects
in their own right; in these data, DMB and TNFc ap-
peared to act either through modifying/interaction ef-
fects on the other loci or through LD with an etiological
locus (or loci) not included in the current analysis. The
low relative contribution of DQB1 in this data set il-
lustrates the impact of population-specific factors, such
as allele and haplotype frequencies, on the power to
discriminate between variants in tight LD, and it high-
lights the importance of comparing the results from
these types of analysis in distantly related populations.

Needless to say, having untyped loci in the region of
LD is a handicap in attempts to identify the etiological
loci. Indeed, on the basis of our mathematical modeling
alone, the DRB1, DQB1, and DOB effects could in
theory be explained by a single locus (or loci) in LD
with them that was not included in the analysis. How-
ever, on the basis of a substantial body of genetic, func-
tional, and structural data (Cucca et al. 2001b), it is
well established that DRB1 and DQB1 are primary
etiological loci in type 1 diabetes. This leaves the DOB
effect, which is not explained by DRB1 and DQB1 or
by DMB or TNFc. The DOB-associated effect and the
effects associated with DMB and TNFc could be ex-
plained by one (or more) locus not yet typed. Since DOB
and DMB, which are in the class II region, are cen-
tromeric of a hot spot of recombination between DOB
and DQB1 (Zavattari et al. 2000), and given mapping
data from other studies (Ota et al. 1999; Nejentsev et
al. 2000), our results for this Sardinian data set would
be consistent with an untyped etiological locus in the
class II region and one other untyped locus, perhaps in

the class III region near TNFc. The class II locus could
be the third classical antigen-presentation gene, HLA-
DPB1, which is also associated with type 1 diabetes in
a primary way (Cucca et al. 2001a). However, this is
unlikely, since the associated DPB1*0402 allele is only
present in 3.6% of Sardinian DR3 haplotypes and,
therefore, cannot account for the non-DR-DQ effect
observed here (Zavattari et al. 2001). The putative class
III locus could be the same type 1 diabetes locus
mapped, in Finnish subjects, to 240 kb of the class III
region near HLA-B at the telomeric end of the class II
region (Nejentsev et al. 2000). Furthermore, it could
correspond to an autoimmune disease locus mapped to
46 kb of this same 240-kb segment of the class III region
(Ota et al. 1999; Nejentsev et al. 2000). The highly
polymorphic immune response molecules, MICA and
MICB, which are encoded in the segment, with MICA
in the 46-kb region, are prime candidates for a class III
disease locus. Full typing of these and other genes in
this specific region is a next step in the identification of
non-DR/DQ loci in type 1 diabetes and in other HLA-
associated diseases (Gambelunghe et al. 1999).
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